RDCH 702: Lecture 9 Separations

- Separation methods
 - Solvent extraction \rightarrow PUREX
 - Ion exchange
 - Volatility
 - Electrochemistry
- Specific actinide separations
- Basic concept of separations
 - Oxidation state
 - Ionic radius
- Development of advanced separations
 - Trivalent actinides
- Necessary for fuel cycle due to formation of mixtures due to fission

 - Fission products \rightarrow Se (Z=34) to Dy (Z=66)

Tributyl phosphate (TBP)

Solvent Extraction

- Two phase system for separation
 - Sample dissolved in aqueous phase
 - \rightarrow Normally acidic phase
- Aqueous phase contacted with organic containing ligand
 - Formation of neutral metalligand species drives solubility in organic phase
- Organic phase contains target radionuclide
 - May have other metal ions, further separation needed
 - → Variation of redox state, contact with different aqueous phase
- Back extraction of target radionuclide into aqueous phase
 - Reduction of Pu to trivalent
- Distribution between organic and aqueous phase measured to evaluate chemical behavior

Solvent extraction

- Influence of chemical conditions
 - Solvent
 - Metal ion and acid concentration
 - \rightarrow Phase splitting
- Distribution coefficient

- Used to determine separation factors for a given metal ion
 - → Ratio of K_d for different metal ions * May be represented by K_d or D
 - $\rightarrow K_d = 1$
 - * 50 % of metal in organic phase
 - $\rightarrow K_d = 10$
 - * 90.9 % of metal in organic phase
 - $\rightarrow K_{d} = 100$
 - * 99.01 % of metal in organic phase
- Distribution can be used to evaluate stoichiometry
 - → Evaluation distribution against change in solution parameter
 - * Plot log K_d versus log [X], slope is stoichiometry
- Extraction can be explained by complexation
 - Used to determine complexation constants

Distribution coefficient and stoichiometry

- Plot log K_d versus log [X]
 - slope is stoichiometry of evaluated parameter
- Consider reaction
 - $xM + yL \leftrightarrow M_xL_y$
 - \rightarrow Want to determine value for y
 - \rightarrow Plot log K_d against log [L]
- Use complexation constant and distribution coefficient

$$\mathbf{K} = \frac{[\mathbf{M}_{\mathbf{x}}\mathbf{L}_{\mathbf{y}}]}{[M]^{x}[L]^{y}}, \mathbf{K}_{d} = \frac{[M]_{org}}{[M]aq} = \frac{[\mathbf{M}_{\mathbf{x}}\mathbf{L}_{\mathbf{y}}]}{[M]}$$

• Substitute K_d into K equation, x=1

•
$$K = \frac{K_d}{[L]^y}$$

- Log of equation
 - Log K = log K_d y log [L]; rearrange equation
 - $\log K_d = \log K + y \log [L]$
 - \rightarrow Log K is constant
 - \rightarrow Slope of log K_d versus log L gives y, the L stoichiometry

Solvation Extraction Mechanism

 $An^{z+} + zL^{-} + \overline{nS} \iff \overline{AcL_zS}$

- Extraction of neutral complex
 - UO₂(NO₃)₂ forms with TBP (P=O functional group)
 - → Equilibrium shifts with nitrate, back extraction into aqueous at low nitric acid
- **Other extractants include bifunctional** ligands
 - **Carbamoyl phosphate compounds**
 - \rightarrow 2 to 4 CMP per extracted molecule
 - **Carbamoylphosphine oxide (CMPO)** → 2 CMPO for U and Pu, 3 for trivalents
 - - * Basis of TRUEX separation for Ln/An
 - **Malonamide extracts can replace** CMPO \rightarrow CHON principle
 - → DIAMEX process

CMPO

 R_1O

 R_1O

Ion Pair Formation

 $An^{z+} + zL^{-} + AL \Leftrightarrow AnL_{z+1}A$

Figures 2 & 3

 $R = C_8 H_{17}$ and $C_{10} H_{21}$

Horwitz, et al. (HP195)

Liquid cation exchanger and chelating agents

$An^{z+} + \overline{zHL} \Leftrightarrow \overline{AnL_z} + zH^+$

- Metal ion exchanged into organic phase, ion transfer in aqueous phase
- Use of organic soluble acid
 - i.e., alkyl phosphinic acid (R₂PO₂H)
- Can be controlled by acidity
- May form aggregates or micelles
- Thenoyltrifluoroacetone (TTA)
 - $M^{z+}_{(aq)} + zHTTA_{(org)} < --> M(TTA)_{z(org)} + H^{+}_{(aq)}$
 - What is the equilibrium constant?

Extractant Ligands

- α-hydroxyisobutyric acid
 - Used in lanthanide separations
- Di-(2-ethylhexyl) phosphoric acid (HDEHP)

Fig. 24.8 Dependence of extraction of Pu(IV), U(VI), Am(III), and Np(V) into 0.5 N HDEHP/iso-octane on nitric acid concentration (Myasoedov et al., 1974).

- Exploited in solvent and solid systems
- TALSPEAK (Am)

PUREX overview

- PUREX (Pu-U Reduction EXtraction) liquid-liquid extraction process developed to recover Pu for weapons production
 - Developed during Manhattan Project
 - → Patented 1947. deployment at Savannah River 1954 and Hanford 1956
 - U and Pu extracted from aqueous to organic phase
 - Pu reduced, goes to aqueous phase while U remains in organic phase
- Decladding mechanical, chemical
- Nitric acid dissolution e.g., rotary wheel
- Solvent extraction and product preparation
 - Includes purification step
- Waste treatment and disposal off-gases; acid, water, and solvent recycle

PUREX Process

Trivalent Pu separates from hexavalent U

by backextraction from organic

۲

۲

9-11

Am(III)

5

6

7

4

Pu(v)

Np(IV)

Th(IV)

PUREX Process

- **Pu reduction drives separation from U**
 - **Trivalent Pu separates from** hexavalent U by backextraction from organic
- Pu reducing agents form Pu(III) which backextracts to aqueous phase
- Ferrous sulfamate: Fe^{2+:}Fe(H₂NO₃S)₂
 - Pu $^{4+}$ + Fe $^{2+}$ \leftarrow \rightarrow Pu $^{3+}$ + Fe $^{3+}$
- **Uranium** (IV)
 - $2Pu^{4+} + U^{4+} + 2H_2O \leftrightarrow 2Pu^{3+} +$ $UO_2^{2+} + 4 H^+$
- Hydroxylamine nitrate (NH₃OH⁺NO₃⁻)

Solvent Extraction in PUREX

PUREX process

- Plant-scale performance of a two-cycle PUREX process:
 - Separation of Pu from U: 10⁶
 - Separation of fission products from Pu: 10⁸
 - Separation of fission products from U: 10⁷
 - Pu and U recovery
- How to achieve high separation with K_d on the order of 10^2
 - Multiple stages

Figure 1. Countercurrent – multistage extraction process flow diagram

http://www.cresp.org/NuclearChemCourse/monographs/11_Law_Liquid-liquid%20extraction%20equipment%20jdl_3_2_09.pdf

U-Pu separation in PUREX

- Based on formation of nitrate species
 - **30 % TBP in kerosene**
 - 3.5 M NHO₃
 - Strip has 0.1 M hydroxylamine nitrate in 3.5 M HNO₃
- Process example of pulse column below

Third Phase Formation

- In liquid-liquid solvent extraction certain conditions cause the organic phase to split
 - PUREX separations TBP
 - Possible with advanced separations
- Limiting Organic Concentration (LOC) highest metal content in phase prior to split
 - Light phase mostly diluent
 - Heavy phase extractant and metal rich
- Safety issues, relate to criticality
- Can be exploited for synthesis

Actinide Third Phases

Figure 1. Actinide LOC values in 7M $HNO_3/1.1$ M TBP/dodecane, M at $T = 20-25^{\circ}C$ (Data reproduced from Reference 12).

[HNO ₃] _{aq}	Np(IV)	$[\mathrm{H}^+]_{\mathrm{org}}$	Error	Np(VI)	$[\mathrm{H}^+]_{\mathrm{org}}$	Error
4	0.10	1.39	0.03	0.27	1.01	0.01
6	0.12	1.49	0.02	0.23	1.20	0.02
7	0.15	1.51	0.01	0.17	1.51	0.17
8	0.10	1.62	0.02	0.14	1.46	0.02
10	0.10	1.52	0.06	0.08	1.72	0.02

.8

Table 1. Concentrations at the LOC boundary for neptunium, M

RDCH 702: Lecture 9 Separations

- Separation methods
 - Solvent extraction \rightarrow PUREX
 - Ion exchange
 - Volatility
 - Electrochemistry
- Specific actinide separations
- Basic concept of separations
 - Oxidation state
 - Ionic radius
- Development of advanced separations
 - Trivalent actinides
- Necessary for fuel cycle due to formation of mixtures due to fission

 - Fission products \rightarrow Se (Z=34) to Dy (Z=66)

Tributyl phosphate (TBP)

RDCH 702: Lecture 9 Separations Part 2

- Separation methods
 - Solvent extraction \rightarrow PUREX
 - Ion exchange
 - **Volatility**
 - Electrochemistry
- Specific actinide separations
- Basic concept of separations
 - Oxidation state
 - Ionic radius
- Development of advanced separations
 - Trivalent actinides
- Necessary for fuel cycle due to formation of mixtures due to fission

 - Fission products \rightarrow Se (Z=34) to Dy (Z=66)

Tributyl phosphate (TBP)

Ion Exchange/Chromatography Separations

- Dissolved sample, solid exchanger
- Adjustment of solution matrix
 - Based on column chemistry and other elements in solution
- Retention of target radionuclide on column
 - Removal of other elements
- Solution adjustment
 - Acid concentration, counter ion variation
 - Addition of redox agent
- Elute target radionuclide
- Can include addition of isotopic tracer to determine yield
- Chemical behavior measured by distribution
 - Similar to K_d
 - → (mg metal/g resin)/(mg metal/mL solution)
 - \rightarrow mL/g

Ion Exchange Resins

- Resins
 - Organic or inorganic polymer used to exchange cations or anions from a solution phase
- General Structure
 - Polymer backbone not involved in bonding
 - Functional group for complexing anion or cation
- Properties
 - Capacity
 - → Amount of exchangeable ions per unit quantity of material
 - * Proton exchange capacity (PEC), meq/g
 - Selectivity
 - \rightarrow Cation or anion exchange
 - * Cations are positive ions
 - * Anions are negative ions
 - \rightarrow Some selectivities within group
 - * Distribution of metal ion can vary with solution

Organic Resins

- Backbone
 - Cross linked polymer chain
 - \rightarrow Divinylbenzene, polystyrene
 - → Cross linking limits swelling, restricts cavity size
- Functional group
 - Functionalize benzene
 - → Sulfonated to produce cation exchanger
 - → Chlorinated to produce anion exchanger
- Structure
 - Randomness in crosslinking produces disordered structure
 - \rightarrow Range of distances between sites
 - \rightarrow Environments
 - * Near organic backbone or mainly interacting with solution
 - Sorption based resins
- Organic with long carbon chains (XAD resins)
 - Sorbs organics from aqueous solutions
 - Can be used to make functionalized exchangers

Inorganic Resins

- More formalized structures
 - Less disorder
- Silicates (SiO₄)
- Alumina (AlO_4)
 - Both tetrahedral
 - Can be combined
 - \rightarrow (Ca,Na)(Si₄Al₂O₁₂).6H₂O
 - Aluminosilicates
 - \rightarrow zeolite, montmorillonites
 - \rightarrow Cation exchangers
 - \rightarrow Can be synthesized
- Zirconium, Tin- phosphate
 - Easy to synthesis
 - \rightarrow Metal salt with phosphate
 - → Precipitate forms
 - * Grind and sieve
 - Zr can be replaced by other tetravalent metals
 - \rightarrow Sn, Th, U
- Zeolites
 - Microporous, aluminosilicate minerals
 - Used as sorbants

Kinetics

- Diffusion controlled
 - Film diffusion
 - → On surface of resin
 - Particle diffusion

 → Movement into resin
- Rate is generally fast
- Increase in crosslinking decrease rate
- Theoretical plates used to estimate reactions <u>Swelling</u>
- Solvation increases exchange
- Greater swelling decreases selectivity

Sorption interactions of plutonium and europium with ordered mesoporous carbon 9-25

Column Chromatography Ion Exchange

- Chromatogram
 - concentration versus elution time
- Strongly retained species elutes last
 - elution order
- Analyte is diluted during elution
 - dispersion
- Zone broadening proportional to elution time
- Separations enhanced by varying experimental conditions

Broadening

- Individual molecule undergoes "random walk"
- Many thousands of adsorption/desorption processes
- Average time for each step with some variations
 - Gaussian peak
 - →like random errors
- Breadth of band increases down column because more time
- Efficient separations have minimal broadening

Theoretical plates

Column efficiency increases with number of plates Analyte profile at Number of molecules end of packing N=L/H \rightarrow N= number of plates, L = column length, H=\ (b) $(L-1\sigma)$ $(L+1\sigma)$ plate height **Assume equilibrium occurs** at each plate $H = \frac{\sigma^2}{L}$ **Movement down column** modeled Plate number can be found Distance migrated experimentally Packing (a) **Other factors that impact**

Sample in

- efficiencyMobile Phase Velocity
 - Higher mobile phase velocity
 - \rightarrow less time on column
 - → less zone broadening

Detector

LiBe		8	C	NO	П
NO ADS. NO ADS.	$K_d = mL/g$	NO ADS.			
No	= (mg metal/g resin)/(mg metal/mL solution)	AI	Si	P	
NO ADS. NO ADS.	OLI 5 10 14 NO AOS NO ADSORPTION FROM 0.1-14 M HNO3 MOLARITY HNO3 SL. ADS SLIGHT ADSORPTION	NO ADS.		NO ADS.	+
K Co NO ADS. NO ADS.	Sc Ti V Cr Mn Fe Co Ni Cu Zn III NO ADS. NO ADS.	Go III ND ADS.	Ge	As Se T	
Rb Sr NO ADS. NO ADS.	Y Zr Nb Mo Tc Ru Rh Pd Ag Cd III III III III III III III III III NO AOS. SL AUS. SL AUS. SL ADS. NO ADS. NO ADS.	In III NO ADS.	Sn. IV SL. ADS.	Sb Te II II NO ADS. NO	¥ ADS.
Cs Bo NO ADS. NO ADS.	HÍ Tơ W Re Os Ir Pt Au Hg IX SL. ADS.	TI I SL. AOS	РЬ	Bi Po	
Fr Ro (b)					
Lo Ge m	Pr Nd Pm Sm Eu Gd Tb Dy Ho Er III St. ADS. NO ADS.	Tm III NO ADS.	III NO ADS.		
AC Th (c) IV NO ADS	Po U ND PU Am Sm Bk Cf Es Fm V VI IV IV III III (e) NO AOS. NO ADS.	Md	No	Lw	

Fig. 8. Adsorption of the elements from HNO₃ solutions by a strong-base anion-exchange resin, Dowex-1, as a function of HNO₃ molarity. [From Faris and Buchanan (138); reproduced with permission of Analytical Chemistry.]

Fig. 24.4 *Elution profiles for trivalent lanthanide and actinide ions and separation factors* (*relative to* Cm = 1.0) *for* α *-hydroxyisobutyrate elution from Dowex* 50 *cation exchange resin* (*Choppin and Silva*, 1956).

Fig. 24.5 Distribution of selected actinide ions onto Diphonix resin from nitric acid solutions (Chiarizia et al., 1997).

Volatility: AIROX

- For treatment of oxide fuel
- UO₂ oxidized to U₃O₈
 - Heating to 400-600 °C in O₂ containing atmosphere
 - Around 30% volume increase
- U₃O₈ reduction by addition of H₂
- Kr, Xe, I removed
 - Some discrepancies

Element	Ref. 1	Ref. 2	Ref. 3	Ref. 4
Ag	80	0	0	0
Cd	0	75	75	80
Cs	99	90	100	99
In	0	75	0	75
Ir	0	0	75	0
Mo	80	0	0	80
Pd	80	0	0	0
Rh	80	0	0	0
Ru	80	90	100	80
Se	80	0	0	99
Тс	80		0	0
Те	99	75	75	99

1. AECL Technologies, Inc. "Plutonium Consumption Program-CANDU Reactor Projects," Final Report, July 1994.

2. SCIENTECH, Inc., Gamma Engineering Corp., "Conceptual Design and Cost Evaluation for the DUPIC Fuel Fabrication Facility," Final Report, SCIE-COM-219-96, May 1996.

- 3. Recycling of Nuclear Spent Fuel with AIROX Processing, D. Majumdar Editor, DOE/ID-10423, December 1992.
- 4. Bollmann, C.A., Driscoll, M.J., and Kazimi, M.S.: Environmental and Economic Performance of Direct Use of PWR Spent Fuel in CANDU Reactors. MIT-NFC-TR-014, 44-45, June 1998.

Element Volatility

- Melting points correlate with vapor pressure
 - Zone refining can have applications
- Data for elements
 - Need to consider solid solutions and intermetallics in fuel

Melting Points

Element	°C	Element	°C
He	-272	La	920
Kr	-157	Pr	935
Xe	-111	Nd	1010
Cs	29	Pm	1042
Rb	39	Sm	1072
Ι	114	U	1132
Te	450	Y	1523
Pu	640	Pd	1552
Ba	725	Zr	1852
Sr	764	Rh	1966
Ce	795	Tc	2200
Eu	822	Ru	2250
		Mo	2617

2617

Volatility: CO₂

- Nearly 70 % of Eu, Gd, Nd, and Sm by oxidation under CO₂ at 1000 °C
 - Attributed to Rh as catalyst in matrix
 - Volatile species not identified
- Near complete removal for Ag, Cs, and Mo

Evaluated rate constants (m	n ⁻¹) for the CO ₂ v	olatilization of Cs, Ag,	Rh, Eu, Sm, and I	Nd in UO_2
-----------------------------	---	--------------------------	-------------------	--------------

Element	750 °C	1000 °C	1250 °C
Cs	7.84+0.96E-03	4.82±0.42E-02	1.72±0.59E-01
Ag	1.09±0.22E-02	1.74±0.62E-01	5.25±0.38E-01
Rh	9.22±0.40E-02	2.24±0.41E-01	4.94±0.54E-01
Eu	3.28±0.34E-02	1.11±0.66E-01	2.84±0.29E-01
Sm	3.85±0.54E-02	9.23±1.01E-02	2.15±0.29E-01
Nd	3.99±0.94E-02	7.85±1.95E-02	1.96±0.20E-01

Carbonyl (CO)

- Metals form a range of complexes with CO
 - Range of oxidation states
 →0 to cations
- Tends to form volatile species
- Mond process
 - Ni treated with CO at 60-80 °C
 - Decomposes at 180 °C to form pure Ni and CO

Carbonyl

- No evidence of U or Pu carbonyl from direct reaction of CO with metal
- Group 1 and 2
 - Form true carbonyls with metals at very low temperature
- No evidence of simple Zr carbonyls
 - Laser ablation experiments
- Lanthanides: Ln from laser ablation studies
 - Volatile species observed
- Noble metal: neutral binary carbonyls: Mo(CO)₆, Tc, Ru, Rh
 - Mo and Pd from the chloride
 - Pd forms mixed halide carbonyl
 - Ru(CO)₅ volatile species at 25° has been observed
 → Ru was on Al₂O₃ catalysts (mixed reactions)

Mo(CO)₆

Halides (F, Cl, Br, I)

- Can be produced from direct metal reaction
 - Compounds often unstable, mixed oxygen species common
- Van Arkel process for obtaining pure Zr
 - Zr with I₂ at 200 °C forms ZrI₄
 - Zr tetrahalide critical temperatures (sublimation, triple point):

→ F (600 °C), Cl (437 °C), Br (450 °C), I (499 °C)

- metal is converted into a volatile halide compound
- volatile compound is decomposed
 - Can be used as plating method (i.e., Zr layer on metal fuel)

Halides

- Fluorination of simulated thermal reactor fuel containing UO₂, PuO₂, and fission product oxides has been studied
 - U selectively fluorinated to UF₆ with BrF₅ at 200 to 400 °C.
 - PuF₄ converted to PuF₆.
 - Most fission products form fluorides that volatilize at high temperatures than the actinides
 → Preferential distillation
- Chlorination also examined, similar to fluoride behavior

Anatasia, L.J., Alfredson, P.G., and Steindler, M.J.: Fluidized-Bed Fluorination of UO_2 -Pu O_2 -Fission Product Pellets with Br F_5 and Fluorine. Part I: The Fluorination of Uranium, Neptunium, and Plutonium. Nuclear Applications and Technology, **7**, 425-432, 1969. Anatasia, L.J., Alfredson, P.G., and Steindler, M.J.: Fluidized-Bed Fluorination of UO_2 -Pu O_2 -Fission Product Pellets with Br F_5 and Fluorine. Part II: Process Considerations. Nuclear Applications and Technology, **7**, 433-442, 1969. Selvaduray, G., Goldstein, M.K., and Anderson, R.N.: Separation Technologies Reviewed. Nuclear Engineering International, **23**, 35-40, 1978.

Halides

- Actinide halides
 - Formed from other fluorides or dioxide in halideorganic solvents

 \rightarrow 2AlCl₃ + UF₆ \leftarrow \rightarrow 2AlF₃ + UCl₆

- \rightarrow UF₄ can be prepared from UO₂ + NH₄HF₂
- \rightarrow Heating metal with I₂ can form AnI₃
- Melting points

 \rightarrow AnF₆: U= 64 °C, Np=55 °C, Pu = 52 °C

- \rightarrow AnF₄: U=1036 °C, Pu= 1027 °C
- \rightarrow UCl₆ (177 °C)

- \rightarrow AnCl₄: U = 590 °C, Np = 517 °C
- \rightarrow AnI₃: U=766 °C, Np = 760 °C, Pu = 777 °C

Halides

- Group 1
 - Produced from the carbonate or hydroxide and HX (halide acid)
 - Can be made by metal reaction
 - Melting points
 - → Trends: F>Cl>Br>I
 - * Rb: 642 °C to 823 °C; Cs: 621 °C to 703 °C
- Group 2
 - Can be formed from direct metal reaction
 - Trend as Group 1
 - melting points (538 °C [SrI₂] to 1477 °C [SrF₂]
- Lanthanides
 - Metal reactions
 - Melting point

→ Over 1200 °C for fluorides, 600 °C to 800 °C for other halides

Halides: Example with Tc

Direct reaction of the elements:

Formation of volatile Tc-Br species

Hexafluoroacetylacetonate (hfac)

- Complexes known for high volatility and ease of synthesis
- Can be used to effect separation directly from a mixture of metal oxides with solvent free reactions
 - Solvent free: mixing of solids
- U from Pb demonstrated in solvent
 - Selective species formation
- hfac used for vapor deposition of metal
 - Possible route to separation and metal formation in single step
- Initial studies performed with actinides, lanthanides and fission elements

RDCH 702: Lecture 9 Separations Part 2

- Separation methods
 - Solvent extraction \rightarrow PUREX
 - Ion exchange
 - **Volatility**
 - Electrochemistry
- Specific actinide separations
- Basic concept of separations
 - Oxidation state
 - Ionic radius
- Development of advanced separations
 - Trivalent actinides
- Necessary for fuel cycle due to formation of mixtures due to fission

 - Fission products \rightarrow Se (Z=34) to Dy (Z=66)

Tributyl phosphate (TBP)

RDCH 702: Lecture 9 Separations Part 3

- Separation methods
 - Solvent extraction \rightarrow PUREX
 - Ion exchange
 - Volatility
 - Electrochemistry
- Specific actinide separations
- Basic concept of separations
 - Oxidation state
 - Ionic radius
- Development of advanced separations
 - Trivalent actinides
- Necessary for fuel cycle due to formation of mixtures due to fission

 - Fission products \rightarrow Se (Z=34) to Dy (Z=66)

Tributyl phosphate (TBP)

Pyroprocesses

- Electrorefining/Electrochemistry
- Uses molten salt as solvent
 - KCI-NaCl
 - Avoids problems associated with aqueous chemistry
 - →Hydrolysis and chemical instability
- Reduction of metal ions to metallic state
- Differences in free energy between metal ions and salt
- Thermodynamic data at hand or easy to obtain
- Sequential oxidation/reduction
 - Cations transported through salt and deposited on cathode
 - Deposition of ions depends upon redox potential

Electrochemical Separations

- Selection of redox potential allows separations
 - Can use variety of electrodes for separation
- Free energies
 - noble metals
 - iron to zirconium
 - actinides and rare earths
 - Group 1 and 2
- Solubility of chlorides in cadmium
- Explored at part of Integral Fast Reactor (IFR) program

Free Energies for Metal Chlorides

te et al. PARTITIONING AND TRANSMUTATION OF LONG-LIVED NUCLIDES

Molten Salt

- Volatility of chlorides as separation basis
 - Gaps between groups
 - High vapor pressures achievable at low temperature

Molten Salt Example

- Oxide fuel dispersed in CaCl₂ /CaF₂ at 800 °C
 - Inclusion of Ca metal reduces U salt to a metal
- Reduced metals dissolved in receiver alloy
 - Example Cu 40% Mg Ca
 - Uranium exceeds solubility limits receiver alloy and precipitates
- Pu, other actinides, rare-earths, and noble metal fission products accumulate in receiver alloy
 - Separated by distillation
- Alkali metals (Rb and Cs), alkali-earths (Sr and Ba), and remaining iodine and bromine accumulate in the CaCl₂/CaF₂ salt.
- Salt contains CaO from the reduction process
 - CaO is electrolytically reduced to metal for reuse

Molten Salt

- LiCl-KCl-UCl₃ at 450-500 °C
- Chopped metallic fuel added to anode baskets
 - U oxidized at anode to U(III)
 - Reduced back to metal at cathode
- Transuranics and fission products oxidized
 - Co-deposition of actinides with cadmium cathode

Pu Processing

(a) Direct Oxide Reduction (DOR)

(b) Electrorefining (ER)

- DOR reduces plutonium dioxide to metal
 - PuO₂ and Ca/CaCl₂
 - Formation of Pu metal and CaO
 - CaO treated with Cl₂
- Pu metal purified by electrorefining
- Pu metal melted in NaCl/KCl at 800°C
- Pu oxidized to PuCl₃,
 - dissolves in molten salt
- PuCl₃ migrates to cathode and reduced
- Pu metal drips from cathode and collects in annular region outside cup
 - ring of pure Pu produced 9-50

Electrolysis cell

Ionic liquids

- Room temperature ionic liquid (ILs) composed of ions that are liquid below 373 K
- Composed of a bulky, unsymmetrical organic cation and an organic or inorganic anion
 - Range of possible pairs, can be task specific
 - Low vapor pressure
 - Ability to dissolve organic and inorganic compounds
 - Conductive
 - Wide electrochemical window
- Ionic liquids are tunable to obtain properties needed for particular application
 - Solubility
 - Reaction Rate
 - Electrochemical window
 - Specific metal ion interaction

Introduction: Ionic liquids

- Ethylammonium nitrate electrochemistry in 1914
- Initial efforts focused on chloroaluminate anion (AlCl₄⁻)
 - Electroplate aluminum
 - J. Electrochem. Soc. 98, 203 (1951)
 - Detailed studies, identification of limitations with chloroaluminate
 - Moisture sensitivity
 - Requires non-ambient conditions
 - Inorg. Chem. 17, 2728 (1978)
- Newer ionic liquids have non-hydrolyzing or stable anions
 - Moisture stable ionic liquids developed
 - JACS, 965 (1992)

Examples of IL cations and anions

Ionic liquids in separations

- Ionic liquids can replace traditional solvents in the PUREX
 - Studies showed favorable extraction when ILs used in conjunction with extractants
 - Chem. Commun. 1765 (1998)
- Possible recovery of metals through electrodeposition
 - direct from the organic phase following solvent extraction

From J. Nucl. Radiochem. Sci., 10(1), 1-6 (2009) 9-54

f-element reduction in ionic liquids

- Haloaluminates not stable to reduction of An(III) or Ln(III) to metal state
- Development of moisture-stable ILs
 - good cathodic stability
 - large ~6V electrochemical windows
- Application based upon the molten salt system (450 800°C)
 - Ionic liquids eliminate
 - Specialized corrosion resistant cell
 - Operation at elevated temperatures
 - Production of caustic side reactions
- Electrochemistry of Sm³⁺, La³⁺, Eu³⁺ and Th⁴⁺ in [Me₃NBu][TFSI]
 - Reported reduction of Sm, La, and Eu to the metallic state
 - Th was reported to reduce to Th^0 but subsequently was converted to ThO_2 by moisture in ionic liquid
 - Dalton Trans, 24, 4532-4534 (2002)
- Role of water central, useful in dissolution by problematic in full reduction

Choice of Ionic Liquid

- A number of ionic liquids initially investigated
- bis(trifluoromethanesulfonyl)imide ______
 (TFSI) anion selected for study at UNLV
 - Functionalized TFSI evaluated
 - propyl and imidazolium
 - large potential window with Au, Pt, and Glassy carbon electrodes
 - Suitable for reduction of lanthanides and actinides
- Ionic liquid
 - N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide
 - Used with actinides
 - Written as [Me₃NBu][TFSI]

Electrochemistry in ionic liquids

- ILs have wider potential window
 - Actinide electrochemistry possible
 - Must limit water in the system
- TFSI is a poor ligand
 - Moves deposition to favorable potential
- Electrode can influence window
 - Glassy Carbon (GC) widest potential window ₉₋₅₇

U TFSI compound synthesis

$UI_3(THF)_4 + 3KTFSI \xrightarrow{THF} U(TFSI)_3 + 3KI_s$

- All reactions were performed in an argon filled glove box
- K(TFSI)(s) synthesized by adding H(TFSI) and KH THF solution
 - K(TFSI) separated by decanting excess THF → 90% yield
- K(TFSI) and $ilde{UI}_3(THF)_4$ dissolved in THF
 - Excess of K(TFSI) added to ensure reaction completion
 - Clear pale yellow solution was stirred for 24 hours
 - Final orange red solution
 - → Contained off white KI solid precipitate
 - \rightarrow THF solution contained product $U(TFSI)_3$
 - \rightarrow Solid was isolated by evaporating excess THF
 - * 74% yield

Formation of Uranium Deposits

- Constant potential of -1.5 V versus NHE
- SEM, EDS, and XRD analysis performed
- SEM of U deposited on Au foil
- XRD evaluation of sample
 - Alpha U metal
- SEM EDS

• No oxygen at 5.5 keV

Direct dissolution of U₃O₈ into ionic liquid

- Original dissolution conditions:
- 45 mg U₃O₈ with 3.27 M HTFSI in Me₃NBuTFSI Stirred for <u>weeks</u> with no change
- **RESULT: dissolution of material**
- oxidizing gas used
 - **O**₃, **NO**₂
- Addition of HTFSI
 - Promote formation of uranium-TFSI complex

Direct dissolution of U₃O₈ into RTIL

Proposed dissolution mechanism:

RDCH 702: Lecture 9 Separations Part 3

- Separation methods
 - Solvent extraction \rightarrow PUREX
 - Ion exchange
 - Volatility
 - Electrochemistry
- Specific actinide separations
- Basic concept of separations
 - Oxidation state
 - Ionic radius
- Development of advanced separations
 - Trivalent actinides
- Necessary for fuel cycle due to formation of mixtures due to fission

 - Fission products \rightarrow Se (Z=34) to Dy (Z=66)

Tributyl phosphate (TBP)

RDCH 702: Lecture 9 Separations Part 4

- Separation methods
 - Solvent extraction \rightarrow PUREX
 - Ion exchange
 - Volatility
 - Electrochemistry
- Specific actinide separations
- Basic concept of separations
 - Oxidation state
 - Ionic radius
- Development of advanced separations
 - Trivalent actinides
- Necessary for fuel cycle due to formation of mixtures due to fission

 - Fission products \rightarrow Se (Z=34) to Dy (Z=66)

Tributyl phosphate (TBP)

- 1855 MT Pu produced
 - Current rate of 70-75 MT/years
 - 225 MT for fuel cycle
 - 260 MT for weapons
- Large scale separations based on manipulation of Pu oxidation state
 - Aqueous (PUREX)
 - Non-aqueous (Pyroprocessing)
- Precipitation methods
 - Basis of bismuth phosphate separation
 - → Precipitation of BiPO₄ in acid carries tri- and tetravalent actinides
 - * Bismuth nitrate and phosphoric acid
 - * Separation of solid, then oxidation to Pu(VI)
 - → Sulfuric acid forms solution U sulfate, preventing precipitation
 - Used after initial purification methods
 - LaF₃ for precipitation of trivalent and tetravalent actinides₄

- Solvent extraction
 - TBP extraction, PUREX process
 - \rightarrow Some interest in 3rd phase formation
- Extraction chromatography
 - Extractant on solid support
- Ion-exchange
 - Both cation and anion exchange
 - → Anion exchange based on formation of appropriate species in acidic solution
 - Change of solution impact sorption to column
- Pu separation
 - Sorb Pu(IV,VI) in 6 M acid, reduce to Pu(III)
- General cation exchange trends for Pu
 - HNO₃, H₂SO₄, and HClO₄ show stronger influence than HCl
 - Strong increase in distribution coefficient in HClO₄ at high acidities exhibited for Pu(III) and Pu(VI)
- Anion exchanges in high acid, formation of charged species

Fig. 52. Volume distribution coefficients, Dv, for tetra and hexavalent U, Np, and Pu between Dowex 1 and hydrochloric acid solutions. 266

Fig. 39. Typical distribution coefficients of Pu on Dowex 50 in common acidic solutions.

TABLE IV-29. Absorption and Desorption of Actinides on Strong Base Anion

Exchangers in HCl Solutions

Oxidation State of Actinide	HCl Concentration (M) for	
	Absorption ^(a)	Desorption ^(b)
ш	Not absorbed	-
IV	6 - 8	2-4
v	6-8	2-4
VI	2-3	0.1-1

(a)Kd = 10-100 for absorption.

(b) Kd = 0.1-1.0 for desorption.

- Halide volatility (PuF₆, PuCl₆)
 - PuO₂ in fluidized bed reactor with fluorine at 400°
 C
 - \rightarrow Can substitute NH₄HF₂ for some fluorination
 - \rightarrow Also use of O_2F_2
 - PuF₆ decomposes to PuF₄ and F₂ in a thermal decomposition column
- Supercritical fluid extraction
 - Most research with CO₂
 - Use complexants dissolved in SCF
 → TBP·HNO₃, TTA for extraction from soil
 - Change of pressure to achieve separations

- Alkaline solutions
 - Need strong ligands that can compete with hydroxide to form different species

 \rightarrow F⁻, CO₃²⁻, H₂O₂

* High solubility, based on oxidation state

* Stabilize Pu(VII)

- Room temperature ionic liquids
 - Quaternary ammonium with anions $\rightarrow AlCl_4^-, PF_6^-$
 - Liquid-liquid extraction
 - Electrochemical disposition

Am solvent extraction

- Tributylphosphate (TBP)
 - Am extracted from neutral or low acid solutions with high nitrate
 - **Am(VI)**
 - \rightarrow Oxidation with $(NH_4)_{10}P_2W_{17}O_{61}$ to stabilize Am(VI)
 - \rightarrow 100 % TBP from 1 M HNO₃
 - * Separation factor 50 from Nd
 - Am separation from lanthanides
 - \rightarrow 1 M ammonium thiocyanate aqueous phase
- Dibutyl butylphosphonate (DBBP)
 - Phosphonate functional group
 - Similar to TBP, stronger extractant of
- Trialkylphophine oxide (TRPO)
 - Increase in basicity of P=O functional group from TBP to DPPB to TRPO
 - Am and Cm extraction from 1-2 M HNO₃
 - 30 % TRPO in kerosene
 - → Am, Cm, tetravalent Np and Pu, hexavalent U extracted
 - * Actinides stripped with 5.5 M HNO₃ (Am fraction)
 - \rightarrow TRPO with C₆-C₈ alkyl group

 $\Rightarrow R^{1}O_{P}R^{3}$

Am solvent extraction

- Bis(2-ethylhexyl)phosphoric acid (HDEHP)
 - Has been used to Am separation
 - Part of TALSPEAK
 - \rightarrow Extracts lanthanides stronger that actinides
 - → TALSPEAK components
 - * Bis(2-ethyl-hexyl)phosphoric acid (HDEHP)
 - * HNO₃
 - * DTPÅ
 - * Lactic acid
- Carbamoylphosphine oxide (CMPO)
 - Synthesized by Horwitz
 - \rightarrow Based on DHDECMP extractions
 - * Recognized functional group, simplified ligand synthesis
 - * Purified by cation exchange
 - Part of TRUEX
 - → TRUEX (fission products)
 - * 0.01 to 7 M HNO₃
 - * **1.4 M TBP**
 - * 0.2 M Diphenyl-N,N-dibutylcarbamoyl phosphine oxide (CMPO)
 - * 0.5 M Oxalic acid
 - * 1.5 M Lactic acid
 - * 0.05 M DTPA

HDEHP

Am solvent extraction

- Tertiary amine salt
 - Low acid, high nitrate or chloride solution
 → (R₃NH)₂Am(NO₃)₅
- Quaternary ammonium salts (Aliquat 336)
 - Low acid, high salt solutions
 - → Extraction sequence of Cm<Cf<Am<Es
 - Studies at ANL for process separation of Am
- Amide extractants
 - $(\mathbf{R}_1, \mathbf{R}_2) \mathbf{N} \cdot \mathbf{C}(\mathbf{O}) \cdot \mathbf{C} \mathbf{R}_3 \mathbf{H} \cdot \mathbf{C}(\mathbf{O}) \cdot \mathbf{N}(\mathbf{R}_1 \mathbf{R}_2)$
 - \rightarrow Diamide extractant
 - \rightarrow Basis of DIAMEX process
 - N,N'-dimethyl-N,N'-dibutyl-2-tetradecyl-malonamide (DMDBTDMA)
 - → DIAMEX with ligand in dodecane with 3-4 M HNO₃
 - * Selective extraction over Nd

CI

Am/Ln solvent extraction

- Extraction reaction
 - $\operatorname{Am}^{3+}_{H^+}+2(\operatorname{HA})_2 \rightarrow \operatorname{AmA}_3\operatorname{HA}+3$
 - → Release of protons upon complexation requires pH adjustment to achieve extraction
 - * Maintain pH greater than 3
- Cyanex 301 stable in acid
 - $\begin{array}{c} \text{HCl, H}_2\text{SO}_4, \text{HNO}_3 \\ \rightarrow \text{Below 2 M} \end{array}$
- Irradiation produces acids and phosphorus compounds
 - Problematic extractions when dosed 10⁴ to 10⁵ gray
- New dithiophosphinic acid less sensitive to acid concentration
 - $\mathbf{R}_{2}\mathbf{PSSH}; \mathbf{R}=\mathbf{C}_{6}\mathbf{H}_{5}, \mathbf{ClC}_{6}\mathbf{H}_{4}, \mathbf{FC}_{6}\mathbf{H}_{4}, \mathbf{CH}_{3}\mathbf{C}_{6}\mathbf{H}_{4}$
 - → Only synergistic extractions with, TBP, TOPO, or tributylphosphine oxide
 - → Aqueous phase 0.1-1 M HNO₃
 - → Increased radiation resistance

Distribution ratios of Am(III) and Ln(III) in 1.0 M Cyanex 301-heptane (16 mol% of Cyanex 301 neutralized before extraction contacts)

Ion exchange separation Am

from Cm

- LiCl with ion exchange achieves separation from lanthanide
- Separation of tracer level Am and Cm has been performed with displacement complexing chromatography
 - DTPA and nitrilotriacetic acid in presence of Cd and Zn as competing cations
 - displacement complexing chromatography method is not suitable for large scale
- Ion exchange has been used to separate trace levels of Cm from Am
 - Am, Cm, and lanthanides sorbed to a cation exchange resin at pH 2
 - → Separation of Cm from Am was performed with 0.01 % ethylenediaminetetramethylphosphonic acid at pH 3.4 in 0.1 M NaNO₃
 - \rightarrow separation factor of 1.4
- Separation of gram scale quantities of Am and Cm by cation and anion exchange
 - use of α-hydroxylisobutyrate or diethylenetriaminepentaacetic acid as an eluting agent or a variation of eluant composition by addition of methanol to nitric acid
 - → best separations were achieved under high pressure conditions
 - * separation factors greater than 400

Extraction chromatography

- Mobile liquid phase and stationary liquid phase
 - Apply results from solvent extraction
 - → HDEHP, Aliquat 336, CMPO
 - * Basis for Eichrom resins
 - * Limited use for solutions with fluoride, oxalate, or phosphate
 - → DIPEX resin (Eichrom)
 - * Bis-2-ethylhexylmethanediphosphonic acid on inert support
 - * Lipophilic molecule
 - **K** Extraction of 3+, 4+, and 6+ actinides
 - * Strongly binds metal ions
 - **%** Need to remove organics from support
 - Variation of support
 - \rightarrow Silica for covalent bonding
 - → Functional organics on coated ferromagnetic particles
 - * Magnetic separation after sorption

Am separation and purification

- Precipitation method
 - Formation of insoluble Am species
 - \rightarrow AmF₃, K₈Am₂(SO₄)₇, Am₂(C₂O₄)₃, K₃AmO₂(CO₃)₂
 - * Am(V) carbonate useful for separation from Cm
 - * Am from lanthanides by oxalate precipitation
 - **%** Slow hydrolysis of dimethyloxalate
 - **%** Oxalate precipitate enriched in Am
 - 💥 50 % lanthanide rejection, 4 % Am
 - Oxidation of Am(VI) by K₂S₂O₈ and precipitation of Cm(III)
- Pyrochemical process
 - Am from Pu
 - \rightarrow O₂ in molten salt, PuO₂ forms and precipitates
 - → Partitioning of Am between liquid Bi or Al and molten salts
 - * K_d of 2 for Al system
 - \rightarrow Separation of Am from PuF₄ in salt by addition of OF₂
 - * Formation of PuF₆, volatility separation

Cm separation and purification: Similar to Am

- Solvent extraction
 - Organic phosphates
 - \rightarrow Function of ligand structure
 - * Mixed with 6 to 8 carbon chain better than TBP
 - HDEHP
 - \rightarrow From HNO₃ and LiCl
 - CMPO
 - \rightarrow Oxidation state based removal with different stripping agent
 - Extraction of Cm from carbonate and hydroxide solutions, need to keep metal ions in solution
 - \rightarrow Organics with quaternary ammonium bases, primary amines, alkylpyrocatechols, β -diketones, phenols
- Ion exchange
 - Anion exchange with HCl, LiCl, and HNO₃
 - \rightarrow Includes aqueous/alcohol mixtures
 - → Formation of $CmCl_4$ at 14 M LiCl
 - * From fluorescence spectroscopy
- Precipitation
 - Separation from higher valent Am
 - \rightarrow 10 g/L solution in base
 - \rightarrow Precipitation of K₅AmO₂(CO₃)₃ at 85 °C
 - → Precipitation of Cm with hydroxide, oxalate, or fluoride

Review

- Understand the differences and techniques for
 - Solvent extraction
 - Ion exchange
 - Electrochemistry
 - Volatility
- Understand how oxidation state influences different separation methods
- Understand the different mechanisms in solvent extraction
- Compare and contrast specific actinide separation
- Describe the components of an ion exchange resin
- Provide a ion exchange and solvent extraction separation for Am from the other actinides.
- Provide the basic of electrochemical and IL separations.
 - What is the differences in these methods?

Questions

- Describe the concepts in solvent extraction?
- What is third phase formation in solvent extraction?
 - How can it be controlled?
 - What is third phase important to understand for actinide separations?
 - How can it be exploited in chemistry?
- Describe a volatility based separation for Pu.

PDF Quiz

- Respond to Lecture 9 PDF quiz
- Provide comment on blog